Aug 19, 2010

History of Steels

Ancient steel

Steel was known in antiquity, and may have been produced by managing bloomeries — iron-smelting facilities — so that the bloom contained carbon.[16]

The earliest known production of steel is a piece of ironware excavated from an archaeological site in Anatolia (Kaman-Kalehoyuk ) and is about 4,000 years old.[17] Other ancient steel comes from East Africa, dating back to 1400 BC.[18] In the 4th century BC steel weapons like the Falcata were produced in the Iberian Peninsula, while Noric steel was used by the Roman military.[19] The Chinese of the Warring States (403–221 BC) had quench-hardened steel,[20] while Chinese of the Han Dynasty (202 BC – 220 AD) created steel by melting together wrought iron with cast iron, gaining an ultimate product of a carbon-intermediate steel by the 1st century AD.[21][22]
[edit] Wootz steel and Damascus steel
Main articles: Wootz steel and Damascus steel

Evidence of the earliest production of high carbon steel in the Indian Subcontinent was found in Samanalawewa area in Sri Lanka.[23] Wootz steel was produced in India by about 300 BC.[24] Along with their original methods of forging steel, the Chinese had also adopted the production methods of creating Wootz steel, an idea imported into China from India by the 5th century AD.[25] In Sri Lanka, this early steel-making method employed the unique use of a wind furnace, blown by the monsoon winds, that was capable of producing high-carbon steel.[26] Also known as Damascus steel, wootz is famous for its durability and ability to hold an edge. It was originally created from a number of different materials including various trace elements. It was essentially a complicated alloy with iron as its main component. Recent studies have suggested that carbon nanotubes were included in its structure, which might explain some of its legendary qualities, though given the technology available at that time, they were produced by chance rather than by design.[27] Natural wind was used where the soil containing iron was heated up with the use of wood. The ancient Sinhalese managed to extract a ton of steel for every 2 tons of soil[citation needed], a remarkable feat at the time. One such furnace was found in Samanalawewa and archaeologists were able to produce steel as the ancients did long ago.[26][28]

Crucible steel, formed by slowly heating and cooling pure iron and carbon (typically in the form of charcoal) in a crucible, was produced in Merv by the 9th to 10th century AD.[24] In the 11th century, there is evidence of the production of steel in Song China using two techniques: a "berganesque" method that produced inferior, inhomogeneous steel and a precursor to the modern Bessemer process that utilized partial decarbonization via repeated forging under a cold blast.[29]
[edit] Modern steelmaking
A Bessemer converter in Sheffield, England

Since the 17th century the first step in European steel production has been the smelting of iron ore into pig iron in a blast furnace.[30] Originally using charcoal, modern methods use coke, which has proven to be a great deal cheaper.[31][32][33]
[edit] Processes starting from bar iron
Main articles: Blister steel and Crucible steel

In these processes pig iron was "fined" in a finery forge to produce bar iron (wrought iron), which was then used in steel-making.[30]

The production of steel by the cementation process was described in a treatise published in Prague in 1574 and was in use in Nuremberg from 1601. A similar process for case hardening armour and files was described in a book published in Naples in 1589. The process was introduced to England in about 1614.[34] It was produced by Sir Basil Brooke at Coalbrookdale during the 1610s. The raw material for this were bars of wrought iron. During the 17th century it was realised that the best steel came from oregrounds iron from a region of Sweden, north of Stockholm. This was still the usual raw material in the 19th century, almost as long as the process was used.[35][36]

Crucible steel is steel that has been melted in a crucible rather than being forged, with the result that it is more homogeneous. Most previous furnaces could not reach high enough temperatures to melt the steel. The early modern crucible steel industry resulted from the invention of Benjamin Huntsman in the 1740s. Blister steel (made as above) was melted in a crucible or in a furnace, and cast (usually) into ingots.[36][37]
[edit] Processes starting from pig iron
A Siemens-Martin steel oven from the Brandenburg Museum of Industry
White-hot steel pouring out of an electric arc furnace

The modern era in steelmaking began with the introduction of Henry Bessemer's Bessemer process in 1858. His raw material was pig iron.[38] This enabled steel to be produced in large quantities cheaply, so that mild steel is now used for most purposes for which wrought iron was formerly used.[39] The Gilchrist-Thomas process (or basic Bessemer process) was an improvement to the Bessemer process, because it lined the converter with a basic material to remove phosphorus. Another improvement in steelmaking was the Siemens-Martin process, which complemented the Bessemer process.[36]

These were rendered obsolete by the Linz-Donawitz process of basic oxygen steelmaking (BOS), developed in the 1950s, and other oxygen steelmaking processes. Basic oxygen steelmaking is superior to previous steelmaking methods because the oxygen pumped into the furnace limits impurities.[40] Now, electric arc furnaces (EAF) are a common method of reprocessing scrap metal to create new steel. They can also be used for converting pig iron to steel, but they use a great deal of electricity (about 440 kWh per metric ton), and are thus generally only economical when there is a plentiful supply of cheap electricity.[41]